
Corecursive Processing of Scientific Data
(The art of borrowing from the future)

Jerzy Karczmarczuk

Université de Caen, Basse Normandie (France)

DSL, Bordeaux, September 8, 2011

Laziness, and in particular the construction of “infinite” lists, is too
often taught as a nice curiosity (or a formal issue). We want to use it
as a serious coding methodology.

Laziness is the primary source of
the progress of Humanity

(And you know very well that I am not joking!)

Introduction

By “scientific” we understand applied mathematics (algebra, analysis,
geometry. . . , as practised by physicists, engineers, etc. Their
programmes contain mainly iterations (often quite regular): successive
approximations, solutions of differential equations (trajectories or
signals generated by algorithms), construction of series (or Padé)
coefficients, etc. Programmes are dominated by the handling of loops.
Let’s replace them by the use of lazy sequences (in Haskell).

Example (para-scientific. . .): A colony of rabbits evolves according
to “rewriting” rules: in one unit of time a young rabbit pair [0] be-
comes a pair of adults [1], and adults give birth to a couple of youngs
[1, 0]. Since rabbits are immortal (facts known to Australians), and
continue to procreate, this sequence grows indefinitely.

Exercise. Write a program which generates the population after an
infinite time. Beginning with [0], [1], we get the following
generations: [1, 0], [1, 0, 1], [1, 0, 1, 1, 0], [1, 0, 1, 1,

0, 1, 0, 1], etc. For more fun: it should be a one-liner. . .

The “last one” is: [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1,

0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1,

0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, ...]

This was a real exercise during my FP (Haskell) course. My students
knew the basics of corecursive constructions, the “infinite lists”, such
as [0 ..] = 0, 1, 2,...:

ints = intsFrom 0 where intsFrom n = n : intsFrom (n+1)

or: ints = 0 : map (1+) ints. Or:
ints = fix ((0:) . zipWith (+) (repeat 1)) for deviants.

I tried to convey the mental pattern I will advocate here: Avoid
thinking in terms of individual elements of a sequence, try to
consider it as a whole, and map the generators/transformers
through it. Don’t hesitate to lift your mathematical
operations from elements to sequences. Then, you can also write

ints = 0 : ones <+> ints where ones=1 : ones

and (<+>) = zipWith (+) is a lifted, element-wise addition of lists.

Such patterns form – if you wish – a language, which should be
specifically learnt. The application of lazy techniques is as difficult as
the relational programming in Prolog, with backtracking and
unification of unknown variables.

Here we have the extrapolating recursion, which is not so exotic: the
flood-fill of contours with a colour is a classical example thereof. If the
pixel – argument of the filling procedure – is unfilled, then fill it, and
recur for all the neighbours. But such programming techniques are
rarely taught as methodologies, and “infinite lists” in Haskell are
presented mainly as curiosities, although everybody speaks about
recursive fixpoints. . . If you wish to use them:

ints = fix ((:) 0 . map (1+))

where fix f = f (fix f)

For rabbits we have a rewriting function rwr x = 1 : [0 | x==1]

which converts 0 or 1 into a list ([1] or [1, 0]), so its application to
a rabbit generation should include the concatenation of internal lists:
nxt gen = concat (map rwr gen) which with monads may be
simplified into nxt gen = rwr =<< gen.
We get all the generations by rabbits = [0] : map nxt rabbits

Also, in analogy with integers, we can write

rabbits = [0] : r1 where

r1 = [1] : zipWith (++) r1 rabbits

getting thus all the Fibonacci words. But this is not the solution of
our problem. We want “just” the “last one”, the ℵ0-th element of this
family! And here my students gave up. Through some nice and
pedagogical Socratic questions (I am happy I am still alive. . .) we
concluded that the fixpoint of the evolution, the Ultimate Rabbit
Sequence fulfills the equation rs = nxt rs, and we were stuck, the
Holy Bottom hit us. The lesson was: Yes, the fixpoint corecursive
equation may work, but – obviously – you should provide a
finite, known prefix (the seed) of your sequence. Here the
solution is simple, even if a bit ugly:

rs = 1:rq where :rq = nxt rs

In general the solution is not so simple, and requires some experience
and/or mental conditioning (my friends call it a perversion, but I
believe that it is just imagination...).

You are aware that there are thousands of articles and Web pages
devoted to the corecursion. The theory is quite old. (And Jeremy
Gibbons with Graham Hutton show how to prove programs based on
corecursion. . .) But the examples everywhere are “standard”, often a
bit boring, and even less useful than the Rabbit Sequence, for the
“outer world”.

We shall see now some other corecursive data, which might be really
useful for the applied mathematics. We begin with something more
direct than the infinite power series, etc.: digital acoustic signals, and
the simulation of musical instruments, which really works.

A signal will be just a sequence of (appropriately normalized)
numbers representing the sound amplitude.

Signals and music

Let’s generate a sinusoid. Mapping the sine over
[x0, x0 + h, x0 + 2h, . . .] is not natural, real generators do not “count
the time”.

z-1 z-1

+

c

-

y
A more natural algorithm is the recur-
rence, whose solution is a sinusoid, e.g.,
the equation below, which corresponds to
the data flow diagram at the left.

sin(nh) = 2 cos(h) · sin((n− 1)h)− sin((n− 2)h)

The corecursive formulation of the corresponding sequence is

y = sin h : (2*cos h)*>y <-> (0:y)

where x *> l = map (x*) l multiplies sequences by scalars. The
block z−1 is a one step delay (one-element prefix). Two starting
elements, 0 and sin(h), must be provided.
Exercise. A sinusoid is also the solution of the differential equation
y′′ = −y, and the modified Euler algorithm reads: yn+1 = yn + h · y′n;
y′n+1 = y′n − h · yn+1. Write a one-line corecurrent code for it.

Karplus-Strong string model

The additive technique of sound synthesis demands some dozens of
oscillators and very complicated filters. But a realistic sound of a
plucked string can be obtained from a discretized string equation
containing a longer delay line. Here this is just a list containing an
initial excitation – some random noise.

The signal moves along the delay line,
and the filter attenuates it, high
frequencies first; spectral components of
period comparable to the medium length
– last. The code is

z-n

z-1+

y

1/2

y = prefx ++ 0.5*>(y <+> (0:y))

where prefx = take n randomStream

where n is chosen in function of the frequency and of the sampling
ratio. The sound is not bad , but replacing the arithmetic mean by
better filters (also in the corecursive style) we may get this or even
this , when two such strings are coupled together, in order to

resonate. (Stop!)

These examples have been written in Clean, a lazy functional
language similar to Haskell, with some low-level advantages. The idea
was not only to write the shortest programmes in the world which
simulated realistic musical instruments, but to convince some people
that practical teaching of this may be fun, because of the modularity
and composability of our blocks.

Even such complicated instruments as violin, or flute (as below)

filterx x-
3

bore delay
noise

flow
++ +

*

y

g c
1

c
2

emb. delay

may be coded in less than 10 lines, some just for a reasonable spectral
filter. . . And the sound is acceptable . I cheated, the true instrument
has more than 10 lines, since I included the vibrato transducer (of
course “the shortest program in the world” (about 6 lines) which
lazily resamples a signal according to a nonlinear, oscillating pattern).

Exercise. Transform into a stream the general IIR filter:

yn =

m∑
k=0

bkxn−k +

p∑
k=1

akyn−k .

Here is the (trivial) answer for the simplest, one pole case:

f1pole b0 a1 x = y where

y = delay (b0*>x - a1*>y)

I could show you much more, e.g. the corecursively coded paradoxical
Shepard-Risset sound (exploited in very bad Italian Science-Fiction

movies), the reverberation combinators, etc., but we have to pass to
some other applications. (Stop)

Back to math. . .

Power series

Several approximation schemes in applied math need power series. We
often seek just the set of coefficients u0, u1, u2, . . . of
U(x) = u0 + u1x+ u2x

2 + · · ·+ unx
n + · · · , but since the algebra of

series expressed in terms of coefficients looks horrible, the computer
algebra packages are notoriously abused, and the manipulation of the
symbolic “x” makes the algorithms quite heavy.

The corecursion based arithmetic is based on the decomposition
U = u0 + x · U which corresponds naturally to the splitting of a
sequence into its head and tail: u = u0 :* uq (instead of standards
lists we use another algebraic datatype in order to avoid confusion).
The addition is element-wise (zip-lifted), and the multiplication
follows the pattern

U · V = (u0 + x · U) · (v0 + x · V) = u0 · v0 + x · (u0V + U · V) ,

or:

(u0 :* uq)*v@(v0 :* vq) = u0*v0 :* u0*>vq+uq*v

(No special names like <+> etc.)

The division is also easy. If W = U · V , then U = W · U , and we
rephrase the above formula:

w0 = u0/v0; W = (U − w0 · V)/V .

(u0 :* uq)/v@(v0 :* vq) = w0:*wq where

{w0=u0/v0; wq=(uq - w0*>vq)/v}

This corecursive definition is much shorter than the classical solution
with indices presented e.g., by Knuth. . .

We shall need also the differentiation and integration of series:

sdiff u : U → U ′ = u1 + 2u2 · x+ 3u3 · x2 + · · ·
sint u c : U →

∫
U = c+ u0 · x+ 1

2u1 · x2 + 1
3u2 · x3 + · · ·

whose codes are trivial (zip-products/quotients with [1, 2, 3, 4, . . .]).

Now, if we want to compute W = exp(U), it suffices to observe that
W ′ = U ′ ·W , so

W =

∫
U ′ ·W + exp(u0) ,

where the last term is the integration constant. The code is:

exp u@(u0:*) = w where w = sint (exp u0) (w*sdiff u)

Other functions follow similar patterns, e.g.,

W =
√
U → W ′ =

1

2
√
U
· U ′, or W =

∫
U ′/(2 ·W) +

√
u0 ,

etc. Other functions may be developed in such a way, but this is not a
blind automaton. If we want the series for the solution of the modified
Bessel equation: x2w′′ + w′ + 1

4w = 0, the way is to integrate
“perversely”

w = −
∫

(x2w′′ +
1

4
w) + w0 .

The application of the lazy corecursion may be a serious
algorithmization problem, not just the coding. Suppose we want to
compute the number of partitions of an integer:
5 = 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,
altogether: 7 partitions. This is the 5-th coefficient of the series –
partition function

Z(x) =

∞∏
n=1

1

1− xn
, or:

Z(x) = Z1(x) where Zm(x) =
1

1− xm
Zm+1(x) .

This is a “crazy” runaway corecursion, useless for, say, Fortran
programmers. But, if we define Bm(x) such that Zm = 1 + xmBm,
this auxiliary function fulfills

Bm(x) = 1 + x
(
Bm+1(x) + xm−1Bm(x)

)
,

which can be directly coded:

partgen = 1 :* b 1 where

b m = p where p = 1 :* b (m+1) + (0:*1)^(m-1)*p

We get: [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77,...]

in no time. (This has some usage in the theory of symmetry in
quantum physics).

We can functionally invert series (find: t = W (x) such that
x = U(t) = t+ u2t

2 + u3t
3 + · · · ; extremely important in physics and

astronomy), . . .
compute their Schröder functions (Ψ(x) such that
Ψ(U(x)) = s ·Ψ(x)),
solve recurrences involving derivatives, construct and evaluate
rational (Padé) approximations, etc.

We have been able to express – relatively easily – some (known and
useful) asymptotic expansions arising from the perturbational
calculus, which are notoriously difficult to derive (and dangerous for
the mental health of students forced to do it (and then, for the
physical health of the teacher). . .). We shall come into it later.

Differential Algebras

One – a little similar to series, but with a different algebra – sort of
sequence has been inspired by the technology called “automatic
differentiation” (AD). Its theoretical basis relies on the fact that
computing derivatives is a purely algebraic process, no
analysis, no “limits” involved. The differentiation, or the derivation is
an operator e→ e′ which is linear, and fulfils the Leibniz identity:
(e · f)′ = e′ · f + e · f ′.

The expression e may be “anything”, and their algebra may be
different from what you think. Lie/Poisson brackets in mechanics are
derivations. Commutators in quantum algebra are derivations. . .
We shall think of e as of (almost) “normal” numerical expression in a
rather ordinary program, which contain standard arithmetic
operations. It contains some manifest constants, and one specific
object called the “variable” (whose name is irrelevant).

We can lift the domain of “standard” expressions to sequences
(e0, e1, e2, . . .), where e0 is the “normal” value, as computed in a
typical way, and e1 = e′, e2 = e′′, etc., wrt. the above mentioned
variable. This variable is just the sequence (0, 1, 0, 0, . . .), and all the
constants have the form (c, 0, 0, . . .).
All programs start with constants, and one (here just one) or more
“variables”. The only thing to do is to reconstruct the arithmetic of
general sequences belonging to this domain. They will be coded as
algebraic data e0 :> eq, where eq is the tail of the sequence. Of
course, the addition/subtraction will be element-wise, the derivation
is linear. The multiplication becomes

e@(e0:>eq)*f@(f0:>fq) = e0*f0 :> (eq*f + e*fq)

and the division:

recip (e0:>eq) = ip where ip = recip e0 :> (-eq*ip*ip)

but beware, beware!. The possibility to compute 1000 derivatives of a
complicated expression is nice, but without simplification you will be
murdered by the exponential complexity of the Leibniz rule!

The expression (sin x)*exp(-x) with x being the differentiation
variable will explode rather fast (don’t try 50 derivatives. . .) But:

exsn x@(x0:>) = p where {ex=exp(-x0);
p = sin x0*ex :> q - p;

q = cos x0*ex :> (-p - q)}

works very well. No, lazy AD is not a free / cheap lunch!

Please notice: ... eq*f ... , not eq*f0 in the Leibniz rule (this was
one of the typical students’ error. . . But the AD simple algorithms
which compute just the first derivative, and are (can be) coded
strictly, would use that).

How to compute exp(x)? Since exp(e)′ = e′ · exp(e), the construction
of elementary functions is straightforward:

exp es@(e:>eq) = w where w = exp e :> eq*w

log es@(e:>eq) = log e :> (eq/es)

sqrt es@(e:>eq) = w where w = sqrt e :> ((1/2) *> (eq/w))

etc.

We dispose of an implementable, non-trivial algebra, where the
derivation is “just” another operator acting on generalized numbers,
without any symbolic manipulations.

The applications are infinite: dynamical control of the stability of the
differential equations solvers, general recurrent definitions involving
derivatives (some special functions are like that), multidimensional
extensions (cumbersome) involving the de l’Hôpital rule, etc.

Let’s compute the Maclaurin series for the Lambert function W (z),
defined implicitly:

W (z) · eW (z) = z .

It is useful in combinatorics, and elsewhere: solutions of several
differential equations may be expressed through it. The differentiation
of the formula gives

dz

dW
= eW (1 +W)

(
=

z

W
(1 +W) for z 6= 0

)
.

Its inversion:
dW

dz
=

e−W

1 +W

(
W

z

1

1 +W

)
may be directly coded, taking into account that W (0) = 0:

w = 0.0 :> (exp (-w)/(1.0+w))

This gives the asymptotic (divergent) series 0.0, 1.0, 2.0, 9.0, 64.0,
. . . , (−n)n−1, . . . , which is of course known, but the idea may be
easily used in other expressions. (BTW., the fact that it diverges does
not preclude its usefulness; We often need just a few terms, and there
exist many convergence improvements. Some of them can be nicely
coded using corecursion. . .)

Feynman diagrams
(In a 0-dimensional ϕ3 field theory)

Conceptually the Quantum Field Theory of interactions is the
simplest theory in the world. Everything happens!

We begin with the elementary interaction: the emission/absorption of
a particle by another one: , and the “movement”, or propagation:

. They are functions of space coordinates or momenta,
charges, spins, etc. In a toy theory they will have numerical (or
symbolic) values. Finally, we construct the probability amplitude of a
process /transition. We call also this amplitude: Green function, Gn.

For a given initial state, e.g., two colliding particles, and some final
state, say, three particles (two scattered and one new produced), we
have to construct all the possible diagrams with the appropriate
external structure, and anything inside in order to construct G5.

Even a simple movement of the particle may create some “bubbles”

and this makes a difference between a “bare” propagator, and the
“dressed” one, which depends on the interaction (coupling) constant
attributed to the vertex .

Exercise. (Admittedly, difficult, difficult also for PhD students in
Physics. . .) Suppose that each vertex contributes one factor
proportional to the coupling constant γ. Assume the value 1 for the
“bare” propagator. Compute the “dressed” propagator Gc

2, which

contains all possible connected bubbles: as a power

series in γ. (So, the diagram above will contribute γ8). But if you
draw all the diagrams for a given order, just counting them is not
enough, there is a catch. . . The fact that quantum particles are
identical, truly indistinguishable, means that for a diagram which
admits N labellings of lines giving the same topology we have to
introduce the factor 1/N !.

Don’t shoot yourself yet. . .
Computing G2 is too complicated, so instead we will compute all Gn

together through the generating functional

Z(J) =

∞∑
n=0

1

n!
GnJ

n .

This Z(J) can be depicted as : S
n

n!

1
-=

where each cross denotes one occurrence of the auxiliary “current” J ,
and the n-legged beastie is Gn. And inside the gray bubble anything
happens. By differentiating Z you get back the Green functions. For
example dZ(J)/dJ =

And then you pronounce a magic truth: The World is Recursive!

(Actually, you know already the Real, True Truth: it is corecursive...
There is no final reduction to the “base case”, the
inside-extrapolating, down-the-rabbit-hole “bubbling” goes ad
infinitum.)
And miracle happens, all the theory within the perturbation framework
may be expressed by the so called Dyson-Schwinger equation:

= + 1/2

If you detach one particle from all that magma, either it interacts or
not. If not, the propagator must end on a current. If yes, then it ends
up on a vertex, and then . . .
And then anything may happen.
Exercise. Write down the analytical form of the D-S equation.

There is nothing to be afraid:

d

dJ
Z(J]) = J · Z[J] +

1

2
γ
d2

dJ2
Z(J) .

If you have learnt the theory of graphs, you might remember that the
generating functional for a complete family of graphs is the
exponential of the generating functional of the connected beasties.
This means that if we introduce W = logZ, we have:

d

dJ
W = J +

1

2
γ

(
d2

dJ2
W +

(
dW

dJ

)2
)
,

or:

= + +1/2 1/2

Exercise. Write a program which solves the DS equation and
computes ϕ = dW/dJ . Let’s repeat the equation:

ϕ = J +
1

2
γ
(
φ′ + ϕ2

)
ϕ is a double series, in J and in γ. It is easier to begin with ϕ as a
series in γ, whose coefficients are series in J . The first element of the
result, ϕ0(J) = J is the identity. The differentiation ϕ′ propagates to
the coefficients, and is coded as fmap sdiff. Here is the solution:

phi :: Series (Series Rational)

phi = j :* (1/2)*>(fmap sdif phi + phi*phi)

where j = 0:*1

Exercice. Find Gc
2 by taking the second term of each element of ϕ.

g2 = fmap (sHead . sTail) phi

The result is:

G2 = 1 + γ2 +
25

8
γ4 + 15γ6 +

12155

128
γ8 +

11865

16
γ10 +

7040125

1024
γ12 + · · ·

Conclusions

Lazy sequences are dynamical processes disguised in data ; one can
transport them, and launch them by looking at their components.
Such programming demands a different vision of what a piece of data
is, and thinking that people will read the manual of Haskell, and start
programming using corecursive algorithms, is too optimistic. Some
people dislike them. I believe that people who don’t like laziness
simply never needed it. I did. . .

Teaching corecursion is difficult. . . There are some patterns to learn,
e.g., instead of iterate f x = x : iterate f (f x) we rather say:
iterate f x = w where w = x : map f w,
or: fix ((x :) . (map f)) (is it a reforestation?. . .). We have seen
the trick which replaced
w = f w by w = (1:q) where :q = f w.

The “circular” programs of Richard Bird, and the usage of folding /
unfolding transformations should be studied, but this takes time!
And, convincing anybody that something may be useful, does not
belong to science, but to politics (or to a religious activity).

The corecursion is a Real World pattern. A child learning to walk
applies corecursion. Bank loans are quite often corecursive, and the
financing of the social security in France is really corecursive. (And
don’t ask me how all that will terminate. . .) Some cosmologists
speculate that our quantum Universe is a corecursive bubble, a
quantum fluctuation of Nothing (not even the vacuum), which “lives
on credit”, virtually, and one day the Creditor may wake-up, and then
. . .

So, learn to use corecursion, you will be better prepared when the
Day comes.

Solutions
Corecursive harmonic oscillator

Here it is, the one-liner:

y=0:w where {w=y+h*>u ; u=1:u-h*>w}

Well. . . a nice fellow would write it in TWO lines. It corresponds to
the diagram

z-1 z-1

+

+

-

y

h

h

Where on the diagram are u and w? Identify the prefixes (the initial
contents of the delay blocks, 0 and 1).

(go back)

	Introduction
	Example

	Signals and music
	Corecursive Signal Generator
	Other instruments

	Power series
	Differential Algebras
	Feynman Diagrams
	Generating Functional

	Conclusions
	Solution, oscillator

