Object language

\ Operational semantics

Cheating?

State passing

save, load

Cheating?

/ State passing

save, load — set!

Cheating?

Continuation passing

reset
catch, throw, both,

——— shift
someone, everyone
abort

Add metacontext

The rest of this course

Multi-level continuations

3)
Dy 4 &
reset
Donkey anaphora: hift

. . Dav 3
scope and binding Day 5 Quotation

Donkey anaphora is in-scope binding

Chris Barker and Chung-chieh Shan

ESSLLI, 6 August 2008
Semantics and Pragmatics 1(1):1-42, 2008

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Donkey anaphora is in-scope binding

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.

Every boy loves his mother.

Why not?

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Why not?

Quantifier scope is clause-bound? But not indefinites.
A donkey eats. It sleeps.
Binding requires c-command? Just evaluation order.

Every boy’s mother loves him.

Why not?

Quantifier scope is clause-bound? But not indefinites.
A donkey eats. It sleeps.
Binding requires c-command? Just evaluation order.
Every boy’s mother loves him.
How to get the right truth conditions?

not 3d.(donkey d) A\ ((eatsd) — (sleepsd))

Why not?

Quantifier scope is clause-bound? But not indefinites.
A donkey eats. It sleeps.
Binding requires c-command? Just evaluation order.
Every boy’s mother loves him.
How to get the right truth conditions?

not 3d.(donkey d) A\ ((eatsd) — (sleepsd))
but —3d. (donkey d) A (eats d) A —(sleeps d)

A donkey takes scope over the entire conditional but under if.

A donkey sleeps if it eats.

Our account

Compositional truth conditions: if, every, most, usually, strong/weak.
Key: multiple levels of continuations

Plan: Everyone loves someone. (surface scope)
Everyone loves his mother.
If a donkey eats, it sleeps.

Our account

Compositional truth conditions: if, every, most, usually, strong/weak.

Key: multiple levels of continuations

Plan:

Everyone loves someone. (surface scope)
Everyone loves his mother.
If a donkey eats, it sleeps.

Everyone loves someone. (inverse scope)
If a farmer owns a donkey, he beats it.
Every farmer who owns a donkey beats it.
Most farmers who own a donkey beat it.

A Lift B//(A\B)
expression =—> expression

X Ac.c(x)

A Lift BJ(A\B)

expression =—> expression

X Ac.c(x)
CJ((A/IB\D) D [(B\E) CJ(A\E)
left right = left right

L R Ac. L(Af.R(Ax. c(fx)))

A Lift BJ(A\B)

expression =—> expression

X Ac.c(x)
CJ((A/IB\D) D [(B\E) CJ(A\E)
left right = left right
L R Ac. L(Af.R(Ax. c(fx)))
C/(B\D) D [J((B\A\E) CJ(A\E)
left right == left right

L R Ac. L(Ax. R(Af. c(fx)))

A Lift B//(A\B) A/J(S\S) Lower A

expression =—> expression expression = expression
X Ac.c(x) F F(Ax.x)
C/(A/B\D) DJ(B\E) C/(ANE)
left right = left right
L R Ac. L(Af.R(Ax. c(fx)))
C/(B\D) DJ((B\ANE) C/I(ANE)
left right == left right

L R Ac. L(Ax. R(Af. c(fx)))

Linear notation Tower notation

BJ(A\C) e
SJ(OPS) sls

DP

Linear notation Tower notation

BJ(A\C) e
SJ(OPS) SIs
e fle() f”

—3x. []

Ac. —3x. c(mother x) —_—
mother x

A Lift B//(A\B) A/J(S\S) Lower A

expression =—> expression expression = expression
X Ac.c(x) F F(Ax.x)
C/(A/B\D) DJ(B\E) C/(ANE)
left right = left right
L R Ac. L(Af.R(Ax. c(fx)))
C/(B\D) DJ((B\ANE) C/I(ANE)
left right == left right

L R Ac. L(Ax. R(Af. c(fx)))

BB als

A Lift A S Lower A
expression = expression expression = expression
x il il fix
X X
co pls cls
A/B
left rlght = left right
sl Al glh 1]
f x f()
cp plE e
B B\A A
left right — left right
sl Al glnl]
x f f()

B|B
A Lift A
expression = expression

x u

X

C|\D D|E C|\E
A/B

left rlght = left right

sl Al glh 1]
f x f()
cp pg e
B B\A A
left right — left right
sl Al glnl]
x f f()

AlS
S Lower A
expression = expression

S fiH

X

DP>B|B

B|B
A Lift A
expression = expression

x u

X

C|\D D|E C|\E
A/B

left rlght = left right

sl Al glh 1]
f x f()
cp pg e
B B\A A
left right — left right
sl Al glnl]
x f f()

Als
S Lower A
expression = expression
il 71

X
A|B A|DP>B
DP Bind DP
expression =—> expression
Sl f(1x)
by X
DPr>B|B
DP
he
Ay-[]
y

B|B
A Lift A
expression = expression

x u

X

C|\D D|E C|\E
A/B

left rlght = left right

sl Al glh 1]
f x f()
cp pg e
B B\A A
left right — left right
sl Al glnl]
x f f()

Als
S Lower A
expression —> expression
S fl]

X
A|B A|DP>B

DP Bind DP

expression —> expression
fI1 f([1x)
X X
DP>B|B S| S
DP (S/S)/S
he if
A1 |
y ApAq.pN—q

Every farmer who owns a donkey beats it

SIS
N
farmer who owns a donkey

Jy. (donkey y) A []

Az. (farmer z) A (owns y z)

Every farmer who owns a donkey beats it

S|DP>S

N
farmer who owns a donkey

Jy. (donkey y) A ([]y)

Az. (farmer z) A (owns y z)

Every farmer who owns a donkey beats it

ﬂi/ S|DPr>S

N
every farmer who owns a donkey
—3x. [] Jy. (donkey y) A ([] y)
PxA—=[] Az (farmerz) A (ownsyz)

AP.

X

Every farmer who owns a donkey beats it

X

DPr>S|S
ﬂi / S|DPr>S S IS
N DP\S
every farmer who owns a donkey beats it
—3x. [] Jy. (donkey y) A ([] y) Aw.[]
AP, PxA—=[] Az (farmerz) A (ownsyz) []

beats w

Every farmer who owns a donkey beats it

DPr>S|S
S S S|DPr>S S [S
N DP\S
every farmer who owns a donkey beats it
—3x. [] Jy. (donkey y) A ([] y) Aw.[]
AP, PxA—=[] Az (farmerz) A (ownsyz) []
X beats w
—3Jx3Jy. donkey y A ((farmer x A owns y x) A —(beats y x))

Most farmers who own a donkey beat it

W

most
MOST(AxAp. [])

AP, PxA(pV][])

X

#{x| F(x)(FALSE) }

MOST(F) = (#{xIF(X)(TRUE)}

>

1
2

)

10

Most farmers who own a donkey beat it (weak)

W

most
MOST(AxAp. [])

AP, PxA(pV][])

X

#{x| F(x)(FALSE) } 1
MOsT(F) = (#{x|F(x)(TRUE)} ~ 3

)

10

Most farmers who own a donkey beat it (strong)

W

most
MOST(AxAp. [])

PxA(pVv-[])

X

AP.

B #{x| F(x)(FALSE) } 1
MosT(F) = (#{x|F<x><TRUE>} - 2)

10

