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Donkey anaphora is in-scope binding

Chris Barker and Chung-chieh Shan
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Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.

Every boy loves his mother.



3

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.

Every boy loves his mother.



3

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.

Every boy loves his mother.



3

Donkey anaphora is in-scope binding

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.
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Why not?

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.

Every boy’s mother loves him.

How to get the right truth conditions?

not ∃d. (donkey d)∧
(
(eats d)→ (sleeps d)

)
but ¬∃d. (donkey d)∧ (eats d)∧¬(sleeps d)

A donkey takes scope over the entire conditional but under if.

A donkey sleeps if it eats.
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Our account

Compositional truth conditions: if, every, most, usually, strong/weak.

Key: multiple levels of continuations

Plan: Everyone loves someone. (surface scope)
Everyone loves his mother.
If a donkey eats, it sleeps.

Everyone loves someone. (inverse scope)
If a farmer owns a donkey, he beats it.
Every farmer who owns a donkey beats it.
Most farmers who own a donkey beat it.
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left right

λc. L(λx. R(λ f . c(fx)))
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Linear notation Tower notation

B( (A)C)
B C

A

S( (DP)S)
S S
DP

λc. f [c(x)]
f [ ]
x

λc.¬∃x. c(mother x)
¬∃x. [ ]

mother x
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Every farmer who owns a donkey beats it
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¬∃x∃y. donkey y∧ ((farmer x∧owns y x)∧¬(beats y x))
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Most farmers who own a donkey beat it
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Most farmers who own a donkey beat it (weak)
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Most farmers who own a donkey beat it (strong)
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