
1

Cheating?

Denotational semantics

Object language

set!

Operational semantics

1

Cheating?

State passing

save, load

set!

Add register

1

Cheating?

State passing

save, load set!

Add register

1

Cheating?

Continuation passing

catch, throw, both,
someone, everyone

reset
shift
abort

Add metacontext

1

The rest of this course

Multi-level continuations

Donkey anaphora:
scope and binding

reset
shift

Quotation

Day 3

Day 5

Day
4

2

Donkey anaphora is in-scope binding

Chris Barker and Chung-chieh Shan

ESSLLI, 6 August 2008
Semantics and Pragmatics 1(1):1–42, 2008

3

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.

Every boy loves his mother.

3

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.

Every boy loves his mother.

3

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.

Every boy loves his mother.

3

Donkey anaphora is in-scope binding

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a
conditional (or the restrictor of a quantifier) yet covaries with an
indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey
pronoun as usual.

Every boy loves his mother.

4

Why not?

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.

Every boy’s mother loves him.

How to get the right truth conditions?

not ∃d. (donkey d)∧
(
(eats d)→ (sleeps d)

)
but ¬∃d. (donkey d)∧ (eats d)∧¬(sleeps d)

A donkey takes scope over the entire conditional but under if.

A donkey sleeps if it eats.

4

Why not?

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.

Every boy’s mother loves him.

How to get the right truth conditions?

not ∃d. (donkey d)∧
(
(eats d)→ (sleeps d)

)
but ¬∃d. (donkey d)∧ (eats d)∧¬(sleeps d)

A donkey takes scope over the entire conditional but under if.

A donkey sleeps if it eats.

4

Why not?

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.

Every boy’s mother loves him.

How to get the right truth conditions?

not ∃d. (donkey d)∧
(
(eats d)→ (sleeps d)

)

but ¬∃d. (donkey d)∧ (eats d)∧¬(sleeps d)

A donkey takes scope over the entire conditional but under if.

A donkey sleeps if it eats.

4

Why not?

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.

Every boy’s mother loves him.

How to get the right truth conditions?

not ∃d. (donkey d)∧
(
(eats d)→ (sleeps d)

)
but ¬∃d. (donkey d)∧ (eats d)∧¬(sleeps d)

A donkey takes scope over the entire conditional but under if.

A donkey sleeps if it eats.

5

Our account

Compositional truth conditions: if, every, most, usually, strong/weak.

Key: multiple levels of continuations

Plan: Everyone loves someone. (surface scope)
Everyone loves his mother.
If a donkey eats, it sleeps.

Everyone loves someone. (inverse scope)
If a farmer owns a donkey, he beats it.
Every farmer who owns a donkey beats it.
Most farmers who own a donkey beat it.

5

Our account

Compositional truth conditions: if, every, most, usually, strong/weak.

Key: multiple levels of continuations

Plan: Everyone loves someone. (surface scope)
Everyone loves his mother.
If a donkey eats, it sleeps.

Everyone loves someone. (inverse scope)
If a farmer owns a donkey, he beats it.
Every farmer who owns a donkey beats it.
Most farmers who own a donkey beat it.

6

A
expression

x

Lift
=⇒

B((A)B)
expression
λc. c(x)

A((S)S)
expression

F

Lower
=⇒

A
expression
F(λx. x)

C(((A/B))D)
left
L

D((B)E)
right

R
=⇒

C((A)E)
left right

λc. L(λ f . R(λx. c(fx)))

C((B)D)
left
L

D(((B\A))E)
right

R
=⇒

C((A)E)
left right

λc. L(λx. R(λ f . c(fx)))

6

A
expression

x

Lift
=⇒

B((A)B)
expression
λc. c(x)

A((S)S)
expression

F

Lower
=⇒

A
expression
F(λx. x)

C(((A/B))D)
left
L

D((B)E)
right

R
=⇒

C((A)E)
left right

λc. L(λ f . R(λx. c(fx)))

C((B)D)
left
L

D(((B\A))E)
right

R
=⇒

C((A)E)
left right

λc. L(λx. R(λ f . c(fx)))

6

A
expression

x

Lift
=⇒

B((A)B)
expression
λc. c(x)

A((S)S)
expression

F

Lower
=⇒

A
expression
F(λx. x)

C(((A/B))D)
left
L

D((B)E)
right

R
=⇒

C((A)E)
left right

λc. L(λ f . R(λx. c(fx)))

C((B)D)
left
L

D(((B\A))E)
right

R
=⇒

C((A)E)
left right

λc. L(λx. R(λ f . c(fx)))

6

A
expression

x

Lift
=⇒

B((A)B)
expression
λc. c(x)

A((S)S)
expression

F

Lower
=⇒

A
expression
F(λx. x)

C(((A/B))D)
left
L

D((B)E)
right

R
=⇒

C((A)E)
left right

λc. L(λ f . R(λx. c(fx)))

C((B)D)
left
L

D(((B\A))E)
right

R
=⇒

C((A)E)
left right

λc. L(λx. R(λ f . c(fx)))

7

Linear notation Tower notation

B((A)C)
B C

A

S((DP)S)
S S
DP

λc. f [c(x)]
f []
x

λc.¬∃x. c(mother x)
¬∃x. []

mother x

7

Linear notation Tower notation

B((A)C)
B C

A

S((DP)S)
S S
DP

λc. f [c(x)]
f []
x

λc.¬∃x. c(mother x)
¬∃x. []

mother x

8

A
expression

x

Lift
=⇒

B((A)B)
expression
λc. c(x)

A((S)S)
expression

F

Lower
=⇒

A
expression
F(λx. x)

C(((A/B))D)
left
L

D((B)E)
right

R
=⇒

C((A)E)
left right

λc. L(λ f . R(λx. c(fx)))

C((B)D)
left
L

D(((B\A))E)
right

R
=⇒

C((A)E)
left right

λc. L(λx. R(λ f . c(fx)))

8

A
expression

x

Lift
=⇒

B B
A

expression
[]
x

A S
S

expression
f []
x

Lower
=⇒

A
expression

f [x]

C D
A/B
left
g[]
f

D E
B

right
h[]
x

=⇒

C E
A

left right
g[h[]]
f (x)

C D
B

left
g[]
x

D E
B\A
right
h[]
f

=⇒

C E
A

left right
g[h[]]
f (x)

8

A
expression

x

Lift
=⇒

B B
A

expression
[]
x

A S
S

expression
f []
x

Lower
=⇒

A
expression

f [x]

C D
A/B
left
g[]
f

D E
B

right
h[]
x

=⇒

C E
A

left right
g[h[]]
f (x)

C D
B

left
g[]
x

D E
B\A
right
h[]
f

=⇒

C E
A

left right
g[h[]]
f (x)

DPBB B
DP
he

λy. []
y

S S
(S/S)/S

if
¬[]

λpλq. p∧¬q

8

A
expression

x

Lift
=⇒

B B
A

expression
[]
x

A S
S

expression
f []
x

Lower
=⇒

A
expression

f [x]

C D
A/B
left
g[]
f

D E
B

right
h[]
x

=⇒

C E
A

left right
g[h[]]
f (x)

A B
DP

expression
f []
x

Bind
=⇒

A DPBB
DP

expression
f ([]x)

x

C D
B

left
g[]
x

D E
B\A
right
h[]
f

=⇒

C E
A

left right
g[h[]]
f (x)

DPBB B
DP
he

λy. []
y

S S
(S/S)/S

if
¬[]

λpλq. p∧¬q

8

A
expression

x

Lift
=⇒

B B
A

expression
[]
x

A S
S

expression
f []
x

Lower
=⇒

A
expression

f [x]

C D
A/B
left
g[]
f

D E
B

right
h[]
x

=⇒

C E
A

left right
g[h[]]
f (x)

A B
DP

expression
f []
x

Bind
=⇒

A DPBB
DP

expression
f ([]x)

x

C D
B

left
g[]
x

D E
B\A
right
h[]
f

=⇒

C E
A

left right
g[h[]]
f (x)

DPBB B
DP
he

λy. []
y

S S
(S/S)/S

if
¬[]

λpλq. p∧¬q

9

Every farmer who owns a donkey beats it

S S
S S
DP

/
N

every
¬∃x. []

λP.
Px∧¬[]

x

S S
N

farmer who owns a donkey
∃y. (donkey y)∧

(

[]

y)

λ z. (farmer z)∧ (owns y z)

DPBS S

S S
DP\S

beats it
λw. []

[]
beats w

¬∃x∃y. donkey y∧ ((farmer x∧owns y x)∧¬(beats y x))

9

Every farmer who owns a donkey beats it

S S
S S
DP

/
N

every
¬∃x. []

λP.
Px∧¬[]

x

S DPBS
N

farmer who owns a donkey
∃y. (donkey y)∧ ([] y)

λ z. (farmer z)∧ (owns y z)

DPBS S

S S
DP\S

beats it
λw. []

[]
beats w

¬∃x∃y. donkey y∧ ((farmer x∧owns y x)∧¬(beats y x))

9

Every farmer who owns a donkey beats it

S S
S S
DP

/
N

every
¬∃x. []

λP.
Px∧¬[]

x

S DPBS
N

farmer who owns a donkey
∃y. (donkey y)∧ ([] y)

λ z. (farmer z)∧ (owns y z)

DPBS S

S S
DP\S

beats it
λw. []

[]
beats w

¬∃x∃y. donkey y∧ ((farmer x∧owns y x)∧¬(beats y x))

9

Every farmer who owns a donkey beats it

S S
S S
DP

/
N

every
¬∃x. []

λP.
Px∧¬[]

x

S DPBS
N

farmer who owns a donkey
∃y. (donkey y)∧ ([] y)

λ z. (farmer z)∧ (owns y z)

DPBS S

S S
DP\S

beats it
λw. []

[]
beats w

¬∃x∃y. donkey y∧ ((farmer x∧owns y x)∧¬(beats y x))

9

Every farmer who owns a donkey beats it

S S
S S
DP

/
N

every
¬∃x. []

λP.
Px∧¬[]

x

S DPBS
N

farmer who owns a donkey
∃y. (donkey y)∧ ([] y)

λ z. (farmer z)∧ (owns y z)

DPBS S

S S
DP\S

beats it
λw. []

[]
beats w

¬∃x∃y. donkey y∧ ((farmer x∧owns y x)∧¬(beats y x))

10

Most farmers who own a donkey beat it

S S
S S
DP

/
N

most
MOST(λxλp. [])

λP.
Px∧ (p∨ [])

x

MOST(F) =
(

#{x | F(x)(FALSE)}
#{x | F(x)(TRUE)}

>
1
2

)

10

Most farmers who own a donkey beat it (weak)

S S
S S
DP

/
N

most
MOST(λxλp. [])

λP.
Px∧ (p∨ [])

x

MOST(F) =
(

#{x | F(x)(FALSE)}
#{x | F(x)(TRUE)}

>
1
2

)

10

Most farmers who own a donkey beat it (strong)

S S
S S
DP

/
N

most
MOST(λxλp. [])

λP.
Px∧ (p∨¬[])

x

MOST(F) =
(

#{x | F(x)(FALSE)}
#{x | F(x)(TRUE)}

<
1
2

)

