

Cheating?

Cheating?

Cheating?

The rest of this course

Donkey anaphora is in-scope binding

Chris Barker and Chung-chieh Shan

ESSLLI, 6 August 2008
Semantics and Pragmatics 1(1):1-42, 2008

Donkey anaphora

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

Donkey anaphora

> If a donkey eats, it sleeps.
> Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a conditional (or the restrictor of a quantifier) yet covaries with an indefinite (or some other quantifier) inside it.

Donkey anaphora

> If a donkey eats, it sleeps.
> Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a conditional (or the restrictor of a quantifier) yet covaries with an indefinite (or some other quantifier) inside it.

Donkey anaphora is in-scope binding

If a donkey eats, it sleeps.
Every farmer who owns a donkey beats it.

A donkey pronoun is a pronoun that lies outside the antecedent of a conditional (or the restrictor of a quantifier) yet covaries with an indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey pronoun as usual.

Every boy loves his mother.

Why not?

Quantifier scope is clause-bound? But not indefinites.
A donkey eats. It sleeps.

Why not?

Quantifier scope is clause-bound? But not indefinites.

> A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.
Every boy's mother loves him.

Why not?

Quantifier scope is clause-bound? But not indefinites.
A donkey eats. It sleeps.
Binding requires c-command? Just evaluation order.
Every boy's mother loves him.
How to get the right truth conditions?

$$
\text { not } \quad \exists d .(\text { donkey } d) \wedge((\text { eats } d) \rightarrow(\operatorname{sleeps} d))
$$

Why not?

Quantifier scope is clause-bound? But not indefinites.
A donkey eats. It sleeps.
Binding requires c-command? Just evaluation order.
Every boy's mother loves him.
How to get the right truth conditions?

$$
\begin{array}{cl}
\text { not } & \exists d .(\text { donkey } d) \wedge((\text { eats } d) \rightarrow(\text { sleeps } d)) \\
\text { but } & \neg \exists d .(\text { donkey } d) \wedge(\text { eats } d) \wedge \neg(\text { sleeps } d)
\end{array}
$$

A donkey takes scope over the entire conditional but under if.
A donkey sleeps if it eats.

Our account

Compositional truth conditions: if, every, most, usually, strong/weak.
Key: multiple levels of continuations
Plan: Everyone loves someone. (surface scope) Everyone loves his mother. If a donkey eats, it sleeps.

Our account

Compositional truth conditions: if, every, most, usually, strong/weak.
Key: multiple levels of continuations
Plan: Everyone loves someone. (surface scope) Everyone loves his mother. If a donkey eats, it sleeps.
Everyone loves someone. (inverse scope) If a farmer owns a donkey, he beats it. Every farmer who owns a donkey beats it. Most farmers who own a donkey beat it.

$$
\begin{array}{ccc}
A & \mathrm{Lift} & B \rrbracket(A \backslash B) \\
\text { expression } & \Longrightarrow & \text { expression } \\
x & & \lambda c . c(x)
\end{array}
$$

$$
\begin{array}{ccc}
A & \mathrm{Lift} & B \rrbracket(A \backslash B) \\
\text { expression } & \Longrightarrow & \text { expression } \\
x & & \lambda c . c(x)
\end{array}
$$

$C /((A / \boldsymbol{B}) \backslash \boldsymbol{D}) \quad \boldsymbol{D} /(\boldsymbol{B} \backslash E)$

left	right	\Longrightarrow	left right L
R			

$$
\begin{array}{ccc}
A & \text { Lift } & B \rrbracket(A \backslash B) \\
\text { expression } & \Longrightarrow & \text { expression } \\
x & & \lambda c . c(x)
\end{array}
$$

$C \rrbracket((A / \boldsymbol{B}) \backslash \boldsymbol{D}) \quad \boldsymbol{D} /(\boldsymbol{B} \backslash E)$

\Longrightarrow| $C \rrbracket(A \backslash E)$ |
| :---: |
| left right |
| $\lambda c \cdot L(\lambda f \cdot R(\lambda x \cdot c(f x)))$ |

$$
\begin{array}{cccc}
C /(\boldsymbol{B} \backslash \boldsymbol{D}) & \boldsymbol{D} /((\boldsymbol{B} \backslash A) \backslash E) \\
\text { left } & \text { right } & \Longrightarrow & \begin{array}{c}
C /(A \backslash E) \\
L
\end{array} \\
\text { left right } \\
\lambda c . L(\lambda x . R(\lambda f . c(f x)))
\end{array}
$$

A	Lift	$B \rrbracket(A \backslash B)$	$A \rrbracket(\mathrm{~S} \backslash \mathrm{~S})$	Lower	A
expression	\Longrightarrow	expression	expression	\Longrightarrow	expression
x		$\lambda c . c(x)$	F		$F(\lambda x . x)$

$$
\begin{array}{ccl}
C \rrbracket((A / \boldsymbol{B}) \backslash \boldsymbol{D}) & \boldsymbol{D} \(\boldsymbol{B} \backslash E) \\
\text { left } & \text { right } \\
L & R & \Longrightarrow
\end{array} \begin{gathered}
C /(A \backslash E) \\
\text { left right } \\
\lambda c . L(\lambda f . R(\lambda x . c(f x)))
\end{gathered}
$$

$C /(\boldsymbol{B} \backslash \boldsymbol{D}) \quad \boldsymbol{D} /((\boldsymbol{B} \backslash A) \rrbracket E)$
left
L
right
R
$C Д(A \backslash E)$
left right
$\lambda c . L(\lambda x . R(\lambda f . c(f x)))$

Linear notation Tower notation

$$
\begin{array}{ll}
B \rrbracket(A \backslash C) & \frac{B \mid C}{A} \\
\mathrm{~S} \Pi(\mathrm{DP} \backslash \mathrm{~S}) & \frac{\mathrm{S} \mid \mathrm{S}}{\mathrm{DP}}
\end{array}
$$

Linear notation	Tower notation
$B \not /(A \backslash C)$	$\frac{B \mid C}{A}$
$\mathrm{~S} /(\mathrm{DP} \backslash \mathrm{S})$	$\frac{\mathrm{S} \mid \mathrm{S}}{\mathrm{DP}}$
$\lambda c . f[c(x)]$	$\frac{f[]}{x}$
$\lambda c . \neg \exists x . c(\operatorname{mother} x)$	$\frac{\neg \exists x .[]}{\text { mother } x}$

A	Lift	$B \rrbracket(A \backslash B)$	$A \rrbracket(\mathrm{~S} \backslash \mathrm{~S})$	Lower	A
expression	\Longrightarrow	expression	expression	\Longrightarrow	expression
x		$\lambda c . c(x)$	F		$F(\lambda x . x)$

$$
\begin{array}{ccl}
C \rrbracket((A / \boldsymbol{B}) \backslash \boldsymbol{D}) & \boldsymbol{D} \(\boldsymbol{B} \backslash E) \\
\text { left } & \text { right } \\
L & R & \Longrightarrow
\end{array} \begin{gathered}
C /(A \backslash E) \\
\text { left right } \\
\lambda c . L(\lambda f . R(\lambda x . c(f x)))
\end{gathered}
$$

$C /(\boldsymbol{B} \backslash \boldsymbol{D}) \quad \boldsymbol{D} /((\boldsymbol{B} \backslash A) \rrbracket E)$
left
L
right
R
$C Д(A \backslash E)$
left right
$\lambda c . L(\lambda x . R(\lambda f . c(f x)))$

		$\frac{B \mid B}{A}$	$\frac{A \mid \mathrm{S}}{}$		
expression	\Longrightarrow	Lift	expression	expression	\Longrightarrow
x		$\frac{[]}{x}$	$\frac{f[]}{x}$		expression x

$\frac{C \mid \boldsymbol{D}}{A / \boldsymbol{B}} \quad \frac{\boldsymbol{D} \mid E}{\boldsymbol{B}} \quad \frac{C \mid E}{A}$
left right \Longrightarrow left right
$\frac{g[]}{f} \quad \frac{h[]}{x} \quad \frac{g[h[]]}{f(x)}$
$\frac{C \mid \boldsymbol{D}}{\boldsymbol{B}} \frac{\boldsymbol{D} \mid E}{\boldsymbol{B} \backslash A} \quad \frac{C \mid E}{A}$
left right \Longrightarrow left right
$\frac{g[]}{x} \quad \frac{h[]}{f} \quad \frac{g[h[]]}{f(x)}$

$$
\begin{aligned}
& \begin{array}{ccc}
A & \mathrm{Lift} & \begin{array}{c}
\frac{B \mid B}{A} \\
\text { expression }
\end{array} \\
\Longrightarrow & \text { expression }
\end{array} \\
& x \\
& \frac{[]}{x} \\
& \text { left right } \Longrightarrow \text { left right }
\end{aligned}
$$

$\begin{array}{ccc} & & \frac{B \mid B}{A} \\ \text { expression } & \Longrightarrow & \text { expression }\end{array}$
x

$\frac{C \mid \boldsymbol{D}}{A / \boldsymbol{B}} \quad \frac{\boldsymbol{D} \mid E}{\boldsymbol{B}} \quad \frac{C \mid E}{A}$
left right \Longrightarrow left right
$\frac{g[]}{f} \quad \frac{h[]}{x} \quad \frac{g[h[]]}{f(x)}$
$\frac{C \mid \boldsymbol{D}}{\boldsymbol{B}} \quad \frac{\boldsymbol{D} \mid E}{\boldsymbol{B} \backslash A}$
$\frac{C \mid E}{A}$
left right \Longrightarrow left right
$\frac{g[]}{x}$
$\frac{h[]}{f}$
$\frac{A \mid \mathrm{S}}{\mathrm{S}}$
Lower A expression \Longrightarrow expression $f[x]$
$\frac{A \mid B}{\mathrm{DP}}$
Bind $\frac{A \mid \mathrm{DP} \triangleright B}{\mathrm{DP}}$ expression \Longrightarrow expression

$\frac{\mathrm{DP} \triangleright B \mid B}{\mathrm{DP}}$
he
$\frac{\lambda y .[]}{y}$

$\frac{S \mid S}{(S / S) / S}$
if
$\frac{\neg[]}{\lambda p \lambda q \cdot p \wedge \neg q}$

Every farmer who owns a donkey beats it

$$
\begin{gathered}
\frac{\mathrm{S} \mid \mathrm{S}}{\mathrm{~N}} \\
\begin{array}{l}
\text { farmer who owns a donkey } \\
\exists y .(\text { donkey } y) \wedge[] \\
\lambda z \cdot(\text { farmer } z) \wedge(\text { owns } y z)
\end{array}
\end{gathered}
$$

Every farmer who owns a donkey beats it

farmer who owns a donkey

$$
\frac{\exists y .(\text { donkey } y) \wedge([] y)}{\lambda z \cdot(\text { farmer } z) \wedge(\text { owns } y z)}
$$

Every farmer who owns a donkey beats it

$$
\left(\begin{array}{cc}
\frac{\mathrm{S} \mid \mathrm{S}}{} & \\
\frac{\mathrm{~S} \mid \mathrm{S}}{\mathrm{DP}} / \mathrm{N} & \frac{\mathrm{~S} \mid \mathrm{DP} \triangleright \mathrm{~S}}{\mathrm{~N}} \\
\begin{array}{cc}
\text { every } \\
\exists \exists x .[]
\end{array} & \begin{array}{c}
\text { farmer who owns a donkey } \\
\exists y .(\text { donkey } y) \wedge([] y)
\end{array} \\
\begin{array}{cc}
\lambda P . \frac{P x \wedge \neg[]}{x} & \lambda .(\text { farmer } z) \wedge(\text { owns } y z)
\end{array}
\end{array}\right.
$$

Every farmer who owns a donkey beats it

$$
\left(\begin{array}{cc}
\frac{\mathrm{S} \mid \mathrm{S}}{\frac{\mathrm{~S} \mid \mathrm{S}}{\mathrm{DP}} / \mathrm{N}} & \frac{\mathrm{~S} \mid \mathrm{DP} \triangleright \mathrm{~S}}{\mathrm{~N}} \\
\begin{array}{c}
\text { every } \\
\neg \exists x \cdot[]
\end{array} & \begin{array}{c}
\text { farmer who owns a donkey } \\
\exists y .(\text { donkey } y) \wedge([] y)
\end{array} \\
\begin{array}{ll}
\lambda P \cdot \frac{P x \wedge \neg[]}{x} & \lambda z \cdot(\text { farmer } z) \wedge(\text { owns } y z)
\end{array}
\end{array} \begin{array}{c}
\frac{\mathrm{DP} \triangleright \mathrm{~S} \mid \mathrm{S}}{\mathrm{~S}} \mathrm{~S} \\
\frac{\mathrm{DP} \backslash \mathrm{~S}}{\text { beats it }} \\
\frac{\lambda w \cdot[]}{\frac{[]}{\text { beats } w}}
\end{array}\right.
$$

Every farmer who owns a donkey beats it

$$
\left.\left(\begin{array}{cc}
\frac{\mathrm{S} \mid \mathrm{S}}{\frac{\mathrm{~S} \mid \mathrm{S}}{\mathrm{DP}} / \mathrm{N}} & \frac{\mathrm{~S} \mid \mathrm{DP} \triangleright \mathrm{~S}}{\mathrm{~N}} \\
\begin{array}{c}
\text { every } \\
\neg \exists x \cdot[] \\
\lambda P \cdot \frac{P x \wedge \neg[]}{x}
\end{array} & \begin{array}{c}
\text { farmer who owns a donkey } \\
\exists z .(\text { donkey } y) \wedge([] y)
\end{array}
\end{array}\right) \begin{array}{c}
\frac{\mathrm{DP} \triangleright \mathrm{~S} \mid \mathrm{S}}{\mathrm{~S}} \mathrm{~S} \\
\frac{\mathrm{DP} \backslash \mathrm{~S}}{\text { beats it } z) \wedge(\text { owns } y z)}
\end{array}\right) \frac{\begin{array}{c}
\lambda w \cdot[] \\
\frac{[]}{\text { beats } w}
\end{array} .}{}
$$

$\neg \exists x \exists y$. donkey $y \wedge(($ farmer $x \wedge$ owns $y x) \wedge \neg($ beats $y x))$

Most farmers who own a donkey beat it

$$
\begin{gathered}
\frac{\mathrm{S}}{\mathrm{~S}} \mathrm{~S} \\
\frac{\mathrm{~S} \mid \mathrm{S}}{\mathrm{DP}} / \mathrm{N} \\
\lambda P \cdot \frac{\operatorname{Pos} \wedge(p \vee[])}{\operatorname{MOST}(\lambda x \lambda p \cdot[])} \\
x
\end{gathered}
$$

$$
\operatorname{MOST}(F)=\left(\frac{\#\{x \mid F(x)(\mathrm{FALSE})\}}{\#\{x \mid F(x)(\mathrm{TRUE})\}}>\frac{1}{2}\right)
$$

Most farmers who own a donkey beat it (weak)

$$
\begin{gathered}
\frac{\mathrm{S} \mid \mathrm{S}}{\frac{\mathrm{~S} \mid \mathrm{S}}{\mathrm{DP}} / \mathrm{N}} \\
\operatorname{most} \\
\lambda P \cdot \frac{P x \wedge(p \vee[])}{x}
\end{gathered}
$$

$$
\operatorname{most}(F)=\left(\frac{\#\{x \mid F(x)(\text { FALSE })\}}{\#\{x \mid F(x)(\text { TRUE })\}}>\frac{1}{2}\right)
$$

Most farmers who own a donkey beat it (strong)

$$
\begin{gathered}
\frac{\mathrm{S} \mid \mathrm{S}}{\mathrm{~S} \mid \mathrm{S}} / \mathrm{N} \\
\mathrm{DP} / \mathrm{Nost} \\
\operatorname{MOST}(\lambda x \lambda p \cdot[]) \\
\lambda P \cdot \frac{\operatorname{Px\wedge (p\vee \neg [])}}{x}
\end{gathered}
$$

$$
\operatorname{Most}(F)=\left(\frac{\#\{x \mid F(x)(\text { FALSE })\}}{\#\{x \mid F(x)(\text { TRUE })\}}<\frac{1}{2}\right)
$$

