

Cheating?

Cheating?

Cheating?

The rest of this course

Donkey anaphora is in-scope binding

Chris Barker and Chung-chieh Shan

ESSLLI, 6 August 2008 Semantics and Pragmatics 1(1):1–42, 2008

Donkey anaphora

If a donkey eats, it sleeps. Every farmer who owns a donkey beats it.

Donkey anaphora

If a donkey eats, it sleeps. Every farmer who owns a donkey beats it.

A *donkey pronoun* is a pronoun that lies outside the antecedent of a conditional (or the restrictor of a quantifier) yet covaries with an indefinite (or some other quantifier) inside it.

Donkey anaphora

If a donkey eats, it sleeps. Every farmer who owns a donkey beats it.

A *donkey pronoun* is a pronoun that lies outside the antecedent of a conditional (or the restrictor of a quantifier) yet covaries with an indefinite (or some other quantifier) inside it.

Donkey anaphora is in-scope binding

If a donkey eats, it sleeps. Every farmer who owns a donkey beats it.

A *donkey pronoun* is a pronoun that lies outside the antecedent of a conditional (or the restrictor of a quantifier) yet covaries with an indefinite (or some other quantifier) inside it.

Our claim: the indefinite takes scope over and binds the donkey pronoun *as usual*.

Every boy loves his mother.

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.

Every boy's mother loves him.

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.

Every boy's mother loves him.

How to get the right truth conditions?

not $\exists d. (\operatorname{donkey} d) \land ((\operatorname{eats} d) \to (\operatorname{sleeps} d))$

Quantifier scope is clause-bound? But not indefinites.

A donkey eats. It sleeps.

Binding requires c-command? Just evaluation order.

Every boy's mother loves him.

How to get the right truth conditions?

not
$$\exists d. (\operatorname{donkey} d) \land ((\operatorname{eats} d) \to (\operatorname{sleeps} d))$$

but $\neg \exists d. (\operatorname{donkey} d) \land (\operatorname{eats} d) \land \neg (\operatorname{sleeps} d)$

A donkey takes scope over the entire conditional but under if.

A donkey sleeps if it eats.

Our account

Compositional truth conditions: if, every, most, usually, strong/weak.

Key: multiple levels of continuations

Plan: Everyone loves someone. (surface scope) Everyone loves his mother. If a donkey eats, it sleeps.

Our account

Compositional truth conditions: if, every, most, usually, strong/weak.

Key: multiple levels of continuations

Plan: Everyone loves someone. (surface scope) Everyone loves his mother. If a donkey eats, it sleeps.

> Everyone loves someone. (inverse scope) If a farmer owns a donkey, he beats it. Every farmer who owns a donkey beats it. Most farmers who own a donkey beat it.

$\begin{array}{ccc} A & \text{Lift} & B/\!/(A \mathbb{B}) \\ expression & \Longrightarrow & expression \\ x & & \lambda c. c(x) \end{array}$

$$\begin{array}{ccc} C /\!\!/ ((A/B) \mathbb{Q}) & D /\!\!/ (B \mathbb{Q}E) & C /\!\!/ (A \mathbb{Q}E) \\ left & right \implies left right \\ L & R & \lambda c. L(\lambda f. R(\lambda x. c(fx))) \end{array}$$

$$\begin{array}{ccc} A & \text{Lift} & B / \hspace{-0.5mm} / \hspace{-0.5mm} (A \hspace{-0.5mm} \backslash B) \\ expression \implies expression \\ x & \lambda c. c(x) \end{array}$$

$$\begin{array}{cccc} C /\!\!/ ((A/B) \backslash D) & D /\!\!/ (B \backslash E) & C /\!\!/ (A \backslash E) \\ left & right \implies left \ right \\ L & R & \lambda c. \ L(\lambda f. \ R(\lambda x. \ c(fx))) \end{array}$$

$$\begin{array}{cccc} C /\!\!/ (\boldsymbol{B} \backslash\!\!\backslash \boldsymbol{D}) & \boldsymbol{D} /\!\!/ ((\boldsymbol{B} \backslash\!\!\land A) \backslash\!\!\backslash E) & C /\!\!/ (\boldsymbol{A} \backslash\!\!\backslash E) \\ left & right & \Longrightarrow & left right \\ L & R & \lambda c. L(\lambda x. R(\lambda f. c(fx))) \end{array}$$

 $A//(S \ S)$ Lower A $expression \implies expression \implies expression$ $F(\lambda x. x)$ F

$$\begin{array}{cccc} C /\!\!/ ((A/B) \backslash D) & D /\!\!/ (B \backslash E) & C /\!\!/ (A \backslash E) \\ left & right \implies left \ right \\ L & R & \lambda c. \ L (\lambda f. \ R(\lambda x. \ c(fx))) \end{array}$$

$$\begin{array}{cccc} C /\!\!/ (\boldsymbol{B} \backslash\!\!\backslash \boldsymbol{D}) & \boldsymbol{D} /\!\!/ ((\boldsymbol{B} \backslash\!\!\land A) \backslash\!\!\backslash E) & C /\!\!/ (\boldsymbol{A} \backslash\!\!\backslash E) \\ left & right & \Longrightarrow & left right \\ L & R & \lambda c. L(\lambda x. R(\lambda f. c(fx))) \end{array}$$

Linear notation	Tower notation
$B//(A \mathbb{L}C)$	$\frac{B \mid C}{A}$
$S/(DP \setminus S)$	S S DP

Linear notation	Tower notation
$B /\!\!/ (A \backslash\!\!\backslash C)$	$\frac{B \mid C}{A}$
S∄(DP\\S)	$\frac{S \mid S}{DP}$
$\lambda c. f[c(x)]$	$\frac{f[]}{x}$
$\lambda c. \neg \exists x. c($ mother $x)$	$\frac{\neg \exists x. []}{\mathbf{mother } x}$

 $A//(S \ S)$ Lower A $expression \implies expression \implies expression$ $F(\lambda x. x)$ F

$$\begin{array}{cccc} C /\!\!/ ((A/B) \backslash D) & D /\!\!/ (B \backslash E) & C /\!\!/ (A \backslash E) \\ left & right \implies left \ right \\ L & R & \lambda c. \ L (\lambda f. \ R(\lambda x. \ c(fx))) \end{array}$$

$$\begin{array}{cccc} C /\!\!/ (\boldsymbol{B} \backslash\!\!\backslash \boldsymbol{D}) & \boldsymbol{D} /\!\!/ ((\boldsymbol{B} \backslash\!\!\land A) \backslash\!\!\backslash E) & C /\!\!/ (\boldsymbol{A} \backslash\!\!\backslash E) \\ left & right & \Longrightarrow & left right \\ L & R & \lambda c. L(\lambda x. R(\lambda f. c(fx))) \end{array}$$

$C \mid D$	$\boldsymbol{D} \mid \boldsymbol{E}$		$C \mid E$
A/ B	B		Α
left	right	\Longrightarrow	left right
g[]	h[]		g[h[]]
f	x		f(x)
$C \mid D$	$\boldsymbol{D} \mid \boldsymbol{E}$		$C \mid E$
$C \mid D$ B	$\frac{\boldsymbol{D} \mid \boldsymbol{E}}{\boldsymbol{B} \setminus \boldsymbol{A}}$		$\frac{C E}{A}$
C D B left	$\begin{array}{c c} \boldsymbol{D} & \boldsymbol{E} \\ \hline \boldsymbol{B} \backslash A \\ right \end{array}$	\Rightarrow	$\frac{C E}{A}$ <i>left right</i>
C D B left g[]	$\begin{array}{c c} \boldsymbol{D} & \boldsymbol{E} \\ \hline \boldsymbol{B} \backslash \boldsymbol{A} \\ right \\ h[] \end{array}$	\Rightarrow	$\frac{C \mid E}{A}$ <i>left right</i> $\underline{g[h[]]}$

A expressi x	Lift	$ \frac{B B}{A} $ expression $ \frac{[]}{x} $	$ \frac{A S}{S} expression \frac{f[]}{x} $	$\stackrel{\text{Lower}}{\Rightarrow}$	$A \\ expression \\ f[x]$
$C \mid D$	$\boldsymbol{D} \mid \boldsymbol{E}$	$C \mid E$			
A/ B	B	A			
left	right	\implies left right			
g[]	$h[\]$	$g[h[\]]$			
f	x	f(x)			
$C \mid D$	$\boldsymbol{D} \mid \boldsymbol{E}$	$C \mid E$	$DP \triangleright B \mid B$		
B	$B \setminus A$	A	DP		
left	right	\implies left right	he		
<u>g[]</u>	h[]	$g[h[\]]$	λy.[]		
x	f	f(x)	У		

		$B \mid B$	A S		
Α	Lift	A	S	Lower	A
express	ion \implies	expression	expression	\implies	expression
x		[]	f[]		f[x]
		X	X		
$C \mid D$	$\boldsymbol{D} \mid \boldsymbol{E}$	$C \mid E$	AB		$A \mid DP \triangleright B$
A/ B	B	\overline{A}	DP	Bind	DP
left	right =	\implies left right	expression	\implies	expression
g[]	h[]	$g[h[\]]$	f[]		f([]x)
f	x	f(x)	X		x
$C \mid D$	$\boldsymbol{D} \mid \boldsymbol{E}$	$C \mid E$	$DP \triangleright B \mid B$		
B	$B \setminus A$	A	DP	-	
left	right =	\implies left right	he		
<i>g</i> []	h[]	$g[h[\]]$	λy.[]		
x	f	f(x)	у		

		$B \mid B$	A S		
A	Lift	A	S	Lower	A
express	ion \implies	expression	expression	\implies	expression
x		[]	f[]		f[x]
		x	X		
$C \mid D$	$\boldsymbol{D} \mid \boldsymbol{E}$	$C \mid E$	AB		$A \mid \mathrm{DP} \triangleright B$
A/ B	B	\overline{A}	DP	Bind	DP
left	right =	\implies left right	expression	\implies	expression
<u>g[]</u>	h[]	$g[h[\]]$	f[]		f([]x)
f	X	f(x)	X		X
$C \mid D$	$\boldsymbol{D} \mid \boldsymbol{E}$	$C \mid E$	$DP \triangleright B \mid B$	_	S S
B	$B \setminus A$	A	DP		(S/S)/S
left	right	\implies left right	he		if
<i>g</i> []	h[]	$g[h[\]]$	λy.[]		٦[]
x	f	f(x)	у	λ	$p\lambda q. p \wedge \neg q$

 $\frac{S \mid DP \triangleright S}{N}$ *farmer who owns a donkey* $\exists y. (donkey y) \land ([] y)$ $\lambda z. (farmer z) \land (owns y z)$

 $\neg \exists x \exists y. \text{ donkey } y \land ((\text{farmer } x \land \text{owns } y x) \land \neg (\text{beats } y x))$

Most farmers who own a donkey beat it

$$\operatorname{most}(F) = \left(\begin{array}{cc} \frac{\#\{x \mid F(x)(\operatorname{false})\}}{\#\{x \mid F(x)(\operatorname{true})\}} > \frac{1}{2} \end{array} \right)$$

Most farmers who own a donkey beat it (weak)

$$\operatorname{most}(F) = \left(\begin{array}{cc} \frac{\#\{x \mid F(x)(\operatorname{false})\}}{\#\{x \mid F(x)(\operatorname{true})\}} > \frac{1}{2} \end{array} \right)$$

Most farmers who own a donkey beat it (strong)

$$MOST(F) = \begin{pmatrix} \frac{S \mid S}{S \mid S} / N \\ \frac{MOST(\lambda x \lambda p. [])}{\lambda P. \frac{Px \land (p \lor \neg [])}{x}} \\ = \begin{pmatrix} \frac{\#\{x \mid F(x)(FALSE)\}}{\#\{x \mid F(x)(TRUE)\}} < \frac{1}{2} \end{pmatrix}$$